PROVA DE QUÍMICA

21-	Qual a massa em gramas de hidróxido de sódio necessária para se preparar 5 litros de uma solução de pOH igual a 2?									
	Mass	as molares: $H = 1$ g/mol, $O = 16$ g/mol e $Na = 23$ g/mol.								
22-	das s	e tempos remotos, a curiosidade humana sempre buscou compreender e explicar as propriedades ubstâncias e também dos diferentes elementos que as constituem. Sobre os elementos químicos mos afirmar que								
	` ′	os gases nobres caracterizam-se por formar moléculas diatômicas.								
		os elementos Mg, K, Cs e Ba são chamados de metais alcalinos terrosos. os metais são bons condutores de calor e eletricidade.								
	,	o cloro é o mais eletronegativo dos halogênios.								
	(16)	os elementos cujos átomos apresentam subnível d parcialmente preenchido são metais de transição.								
	(32)	o elemento químico é definido por seu número atômico.								
	(64)	o hélio é o elemento químico de maior raio atômico.								
23-	cientí	lização de métodos de separação de misturas e de purificação de substâncias é de grande valia fica e tecnológica em vários campos da química e da engenharia. Em relação às misturas e aos métodos de separação, podemos afirmar que								
	(01)	uma solução salina fisiológica é um exemplo de mistura homogênea.								
	(02)	o sal pode ser retirado da água do mar pela filtração simples.								
	(04) (08)	uma mistura entre serragem e areia pode ser separada por flotação. a recristalização é o método mais adequado para a purificação de gases.								
	(16)	as misturas podem ser classificadas em simples e compostas.								
	(32) (64)	uma mistura monofásica também é chamada de homogênea. o alumínio pode ser retirado de uma mistura com o uso de um ímã.								
		o alamino pode sei remado de ama mistara com o uso de um ma.								

24- Na exposição de um filme fotográfico à luz, ocorre a seguinte reação química:

$$2 \text{ AgBr} \rightarrow 2 \text{ Ag} + \text{Br}_2$$

Determine o número de mols de prata metálica obtida a partir da decomposição de 2256 gramas de brometo de prata.

Massas molares: Ag = 108 g/mol e Br = 80 g/mol.

- 25- O desenvolvimento de novas rotas de síntese de compostos orgânicos é uma das áreas da química que desperta grande interesse econômico em vários setores industriais. Em relação aos compostos orgânicos e suas reações, podemos afirmar que
 - (01) a oxidação do acetaldeído produz ácido acético.
 - (02) o etileno, ao reagir com o HCl, produz o clorofórmio.
 - (04) carboidratos são hidrocarbonetos alifáticos.
 - (08) a combustão completa do metano produz gás carbônico e água.
 - (16) os ácidos carboxílicos reagem facilmente com amônia.
 - (32) o etanol possui um ponto de ebulição maior que do ácido acético.
 - (64) os éteres e ésteres são isômeros de função.

26- Uma pilha galvânica clássica é a de zinco e cobre, que pode ser representada da seguinte maneira:

$$(-) Zn^0 / Zn^{2+} // Cu^{2+} / Cu^0 (+)$$

Seu potencial padrão é igual a 1,10 volts. Em relação às pilhas, podemos afirmar que

- (01) nesta pilha, o zinco sofre redução no ânodo.
- (02) a energia elétrica de uma pilha é obtida a partir de reações químicas espontâneas.
- (04) o eletrodo de cobre é o cátodo.
- (08) nesta pilha, para cada mol de zinco que se oxida, ocorre a redução de um mol de cobre.
- (16) o KCl pode ser usado como ponte salina da pilha acima.
- (32) o potencial padrão desta pilha indica que a reação envolvida não ocorre espontaneamente.
- (64) as pilhas são dispositivos que não podem ser utilizados como fonte de energia.

27- Um dos grandes problemas ambientais da atualidade é o aumento da quantidade de gás carbônico na atmosfera devido principalmente à queima de combustíveis fósseis. Assinale a(s) alternativa(s)

correta(s).

correta(s).

- (01) O aumento das quantidades de O₂ na atmosfera causa a destruição da camada de ozônio.
- (02) 1 mol de CO₂ nas condições normais de temperatura e pressão ocupa um volume de 22,4 litros.
- (04) CO₂ no estado sólido é chamado gelo seco, o qual se funde na temperatura ambiente, passando ao estado gasoso.
- (08) O ácido carbônico se decompõe facilmente formando CO₂ e H₂O.
- (16) As ligações covalentes presentes na molécula de CO₂, são polares.
- (32) CO₂ pode ser obtido pela reação de solução aquosa de Ca(OH)₂ com CaCO₃.
- (64) O número de oxidação do carbono no metano é 4- e no gás carbônico é 4+.
- 28- O Oriente Médio é uma região de grande instabilidade política e lá se concentra grande parte das reservas petrolíferas do mundo. Tal situação sempre causou problemas para a economia dos países consumidores de petróleo. Em relação ao petróleo e outros combustíveis, assinale a(s) alternativa(s)
 - (01) O petróleo é constituído essencialmente pela mistura de carboidratos.
 - (02) Os derivados do petróleo são isolados por destilação fracionada.
 - (04) O carvão mineral é uma forma alotrópica do petróleo.
 - (08) A gasolina pode ser substituída pelo etanol em motores de automóveis.
 - (16) O gás de cozinha é um exemplo de hidrocarboneto de alto peso molecular.
 - (32) A combustão dos hidrocarbonetos é um processo exotérmico.
 - (64) O derramamento de petróleo em rios e mares é agravado pela alta solubilidade do mesmo em água.
- 29- A água pode ser obtida por meio da reação entre hidrogênio e oxigênio. Analise as equações abaixo e assinale a(s) alternativa(s) correta(s):
 - (I) $2 H_2 (g) + O_2 (g) \rightarrow 2 H_2 O (l)$ $\Delta H^0 = -572 \text{ kJ}$
 - (II) $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$ $\Delta H^0 = -484 \text{ kJ}$
 - (01) Os processos de formação de água nas equações acima são exotérmicos.
 - (02) No processo (II), o volume ocupado pela água é muito maior que no processo (I).
 - (04) A entalpia molar de formação da água no estado líquido é -286 kJ/mol.
 - (08) A entalpia molar de vaporização da água é 44 kJ/mol.
 - (16) Ambas reações são favorecidas pelo aumento da temperatura.
 - (32) A entalpia de uma reação espontânea é sempre positiva.
 - (64) A adição de catalisadores pode alterar as entalpias das reações acima.

30- A atividade biológica de muitos fármacos está relacionada com a sua estrutura molecular. Desta forma, a existência ou não de isômeros passa a ser uma grande preocupação das pesquisas da indústria

farmacêutica. Sobre isomeria, assinale a(s) alternativa(s) correta(s).

- (01) Etanol e éter metílico são isômeros de função.
- (02) O ácido acético é isômero do ácido etanóico.
- (04) Mistura racêmica é uma mistura de isômeros ópticos.
- (08) O tolueno pode apresentar seis isômeros de posição.
- (16) A tautomeria é uma característica de aldeídos e cetonas.
- (32) A isomeria óptica fundamenta-se na existência de átomos de carbono simétricos ou quirais.
- (64) O 2-buteno apresenta isômeros cis e trans.

1		
·		

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

COM MASSAS ATÔMICAS REFERIDAS AO ISÓTOPO 12 DO CARBONO																	
1						CHA	AVE										18
IA																	0
1					1		Atômico									1	2
Н	2					SÍME Massa						13	14	15	16	17	Не
1,00797	IIA					1410350 7	Atomica					IIIA	IVA	VA	VIA	VIIA	4,0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
6,939	9,0122											10,811	12,0111	14,0067	15,9994	18,9984	20,183
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	C1	Ar
22,9898	24.312	IIIB	IVB	VB	VIB	VIIB	O	VIII	10	IB	IIB	26,9815	28,086	30,9738	32,064	35,453	39,948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,102	40,08	44,956	47,90	50,942	51,996	54,938	55,847	58,933	58,71	63,54	65,37	69,72	72,59	74,922	78,96	79,909	83,80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85,47	87,62	88,905	91,22	92,906	95,94	(98)	101,07	102,905	106,4	107,870	112,40	114,82	118,69	121,75	127,60	126,904	131,30
55	56	Série	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	do	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
132,905	137,34	La	178,49	180,948	183,85	186,2	190,2	192,2	195,09	196,976	200,59	204,37	207,19	208,980	(210)	(210)	(222)
87	88	Série	104	105	106	107	108	109									
Fr	Ra	do	Unq	Unp	Unh	Uns	Uno	Une									
(223)	(226)	Ac	(272)	(268)													

Série	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
do	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yh	Lu
La	138,91	140,12	140,907	144,24	(147)	150,36	151,96	157,26	158,924	162,50	164,930	167,26	168,934	173,04	174,97
Série	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
do	Ac	Th	Pa	IJ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Ac	(227)	232,038	(231)	238,03	(237)	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(255)	(256)