PROVA DE QUÍMICA

- 21. O acetileno (C₂H₂) é um gás que pode ser produzido colocando o carbeto de cálcio (CaC₂) na presença de água (H₂O). A combustão do acetileno pode liberar cerca de 1256 kJ/mol e a temperatura da chama pode chegar a 3.000 °C. A respeito destas informações, assinale a(s) alternativa(s) correta(s).
 - (01) A equação química de formação do acetileno descrito acima é: $CaC_2 + Ca(OH)_2 \rightarrow C_2H_2 + 2 H_2O$
 - (02) A combustão é um processo no qual o acetileno é reduzido.
 - (04) Para a queima de 2,6 gramas de acetileno serão liberados 125,6 kJ de energia.
 - (08) O acetileno possui ligação iônica, pois a temperatura alcançada na combustão é elevada.
 - (16) A massa molar aproximada do acetileno é 26 g/mol.
 - (32) O estado de oxidação do hidrogênio no acetileno é -1.
 - (64) A reação de combustão do acetileno é endotérmica.
- 22. O ácido láctico, CH₃CH(OH)COOH, é um ácido cujo pK_a é aproximadamente 3,0. Seu polímero é utilizado na medicina para sutura de tecidos, uma vez que este polímero é absorvido pelo corpo humano. A respeito destas informações, assinale a(s) alternativa(s) correta(s).
 - (01) O ácido láctico é um ácido forte.
 - (02) O K_a do ácido láctico é 10⁻¹¹.
 - (04) O lactato é uma base fraca.
 - (08) Em meio aquoso, o ácido láctico sofre uma desprotonação, formando o lactato.
 - (16) Numa titulação, o ponto equimolar do ácido e sua base conjugada ocorrerá em pH 3,0.
 - (32) A nomenclatura oficial do ácido láctico é ácido 2-hidróxi-propanóico.
 - (64) O ácido láctico não possui átomo de carbono quiral.
- 23. Para a reação descrita abaixo, foram colocados 28 gramas de CaO com 6 gramas de áqua. A respeito destas informações, assinale a(s) alternativa(s) correta(s).

CaO (s) +
$$H_2O$$
 (I) \rightarrow Ca(OH)₂ (aq)

(01) O reagente limitante da reação é a água.

- (02) Após ocorrer a reação, a solução terá pH igual a 7.
- (04) A massa de Ca(OH)₂ formada será de 74 gramas, considerando um rendimento de 100%.
- (08) A água é uma molécula de geometria angular e formada somente por ligações simples.
- (16) A nomenclatura oficial do Ca(OH)₂ é hidróxido de cálcio.
- (32) Dentre os elementos da reação acima em seu estado de oxidação zero, o que possui maior raio atômico é o oxigênio.
- (64) A reação descrita acima é uma reação de oxi-redução.
- 24. A esmeralda é um mineral essencialmente formado por alumínio, berílio e silicato, cuja fórmula química é Be₃Al₂Si₆O₁₈, ocorrendo na forma de um prisma hexagonal. Ela é a principal fonte de berílio e sua tonalidade esverdeada é devido a impurezas de cromo (III). A respeito destas informações, assinale a(s) alternativa(s) correta(s).
 - (01) O elemento mais eletronegativo da esmeralda é o oxigênio.
 - (02) O elemento com menor massa atômica é o berílio.
 - (04) O único elemento metálico que compõe a esmeralda é o alumínio.
 - (08) O silicato é uma substância formada por silício e berílio.
 - (16) O cromo em seu estado de oxidação zero não é condutor de eletricidade.
 - (32) O berílio possui orbital atômico "p" ocupado em seu estado fundamental.
 - (64) Na fórmula química da esmeralda, para cada átomo de alumínio existem 9 átomos de oxigênio.
- 25. Abaixo é apresentada a estrutura do benzeno

Das afirmativas mostradas a seguir, assinale a(s) correta(s):

- (01) A completa hidrogenação do benzeno gera como produto o cicloexano.
- (02) A substituição de um átomo de hidrogênio por um radical metila gera como produto o metilbenzeno, mais conhecido como tolueno.
- (04) O benzeno é uma cadeia alicíclica.
- (08) O benzeno é um hidrocarboneto aromático.
- (16) O benzeno possui fórmula molecular C₆H₆.
- (32) A reação de nitração do benzeno gera como produto o nitrosobenzeno.
- (64) Os vapores de benzeno são altamente tóxicos.
- 26. Considerando as substâncias apresentadas na tabela abaixo, pode-se afirmar que:

Substância	Ponto de ebulição (°C)
butano	0
1-butilamina	48
n-butanol	97
etóxi-etano	35

- (01) O butano é um hidrocarboneto cuja massa molecular é 34 u.
- (02) O maior ponto de ebulição do *n*-butanol deve-se à formação de ligações hidrogênio mais fortes do que aquelas existentes na 1-butilamina.
- (04) A 1-butilamina é uma amina primária.
- (08) Na temperatura ambiente (25 °C), o butano é um líquido.
- (16) A 1-butilamina apresenta propriedades ácidas.
- (32) O butano é um hidrocarboneto obtido pela destilação fracionada do petróleo.
- (64) O etóxi-etano e o butano são isômeros constitucionais de função.
- 27. As garrafas de refrigerantes descartáveis são feitas de um material plástico conhecido como PET, que é uma sigla para PoliEtilenoTereftalato. O PET pode ser obtido a partir da seguinte següência de reações:

Assinale a(s) alternativa(s) correta(s):

- (01) O PET é uma estrutura polimérica e a porção da estrutura colocada entre colchetes é denominada monômero.
- (02) O etilenoglicol é um aldeído cujo nome oficial é 1,2-etanodiol.
- (04) A nomenclatura oficial do p-xileno é 1,4-dimetil-benzeno.
- (08) A conversão do p-xileno em ácido tereftálico é uma reação de redução.
- (16) A reação entre o ácido tereftálico e o etilenoglicol é uma esterificação, por isto este polímero é classificado como um poliéster.
- (32) O ácido tereftálico reage com uma solução aquosa de hidróxido de sódio formando um sal orgânico.
- (64) O etilenoglicol é insolúvel em água, pois não é capaz de formar ligações hidrogênio.

descrita abaixo.

A partir do esquema mostrado na figura acima, pode-se afirmar:

- (01) Tanto A como B são substâncias simples.
- (02) A reação de hidratação do composto A gera um álcool como único produto.
- (04) A composição centesimal de carbono na substância A é de 93,3%.
- (08) Todos os átomos de carbono da substância B apresentam hibridização sp².
- (16) O nome oficial da substância A é cis-1,2-difenil-eteno.
- (32) A fórmula molecular da substância B é C₁₄H_{24.}
- (64) Os compostos A e B são isômeros geométricos.
- 29. Prepararam-se 200 mL de uma solução aquosa de NaOH 1,5 mol/L. Determine a massa, em gramas, de NaOH utilizada. O resultado deve ser expresso em número inteiro.
- 30. Um biodigestor produziu 8 kg de metano. Este foi acumulado em um cilindro cujo volume é de 150 litros a uma temperatura de 27 °C. Determine a pressão no interior do cilindro em atmosferas, considerando o metano um gás ideal e a constante dos gases igual a 0,082 L atm K⁻¹ mol⁻¹. O resultado deve ser expresso em número inteiro.

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS COM MASSAS ATÔMICAS REFERIDAS AO ISÓTOPO 12 DO CARBONO

COM MASSAS ATOMICAS REFERIDAS AO ISOTOPO 12 DO CARBONO																	
1						СН	AVE										18
IA	_							_									O
1							Atômico BOLO										2
Н	2						Atômica					13	14	15	16	17	He
1,00797	IIA	-										IIIA	IVA	VA	VIA	VIIA	4,0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
6,939	9,0122											10,811	12,0111	14,0067	15,9994	18,9984	20,183
11	12	_		_		_	0	0	1.0		1.0	13	14	15 D	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22,9898	24.312	IIIB	IVB	VB	VIB	VIIB	26	VIII	20	IB	IIB	26,9815	28,086	30,9738	32,064	35,453	39,948
19	20	21	22 TC:	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,102 37	40,08	44,956 39	47,90 40	50,942	51,996 42	54,938 43	55,847 44	58,933 45	58,71 46	63,54 47	65,37 48	69,72	72,59 50	74,922 51	78,96 52	79,909 53	83,80 54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd		Cd	In	Sn	Sb	Te	I	Xe
85,47	87,62	88,905	Z.1 91,22	92,906	95,94	(98)	101,07	102,905	106,4	Ag	112,40	111	118,69	121,75	127,60	126,904	131,30
55	56	Série	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	do	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
132,905	137,34	La	178,49	180,948	183,85	186,2	190,2	192,2	195,09	196,976	200,59	204,37	207,19	208,980	(210)	(210)	(222)
87	88	Série	104	105	106	107	108	109					1				
Fr	Ra	do	Unq	Unp	Unh	Uns	Uno	Une									
(223)	(226)	Ac	(272)	(268)													
Série	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71		
do	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
La	138,91	140,12	140,907	144,24	(147)	150,36	151,96	157,26	158,924	162,50	164,930	167,26	168,934	173,04	174,97		
Série	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103		
do	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
Ac	(227)	232,038	(231)	238,03	(237)	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(255)	(256)		